Premature termination codons enhance mRNA decapping in human cells.
نویسندگان
چکیده
Nonsense-mediated mRNA decay (NMD) is a eukaryotic surveillance process that promotes selective degradation of imperfect messages containing premature translation termination codons (PTCs). In yeast, PTCs trigger both deadenylylation-independent mRNA decapping, thereby allowing their rapid degradation by a 5' to 3' exonuclease, and to a smaller extent accelerated deadenylylation. It is not clear to what extent this decay pathway is conserved in higher eukaryotes. We used a transcriptional pulse strategy relying on a tetracycline-regulated promoter to study the decay of a PTC- containing beta-globin mRNA in human cells. We show that a PTC destabilizes the mRNA and decreases its half-life from >16 h to 3 h. The deadenylylation rate is increased, but not sufficiently to account for the decreased half-life on its own. Using a circularization RT-PCR (cRT-PCR) strategy, we could detect decapped degradation intermediates and measure simultaneously their poly(A) tail length. This allowed us to show that a PTC enhances the rate of mRNA decapping and that decapped products have been deadenylylated to a certain extent. Thus the major feature of the NMD pathway, enhanced decapping, is conserved from yeast to man even though the kinetic details might differ between various mRNAs and/or species.
منابع مشابه
Nonsense-mediated mRNA decay among coagulation factor genes
Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...
متن کاملRous Sarcoma Virus RNA Stability Element Inhibits Deadenylation of mRNAs with Long 3′UTRs
All retroviruses use their full-length primary transcript as the major mRNA for Group-specific antigen (Gag) capsid proteins. This results in a long 3' untranslated region (UTR) downstream of the termination codon. In the case of Rous sarcoma virus (RSV), there is a 7 kb 3'UTR downstream of the gag terminator, containing the pol, env, and src genes. mRNAs containing long 3'UTRs, like those with...
متن کاملAn mRNA surveillance mechanism that eliminates transcripts lacking termination codons.
Translation is an important mechanism to monitor the quality of messenger RNAs (mRNAs), as exemplified by the translation-dependent recognition and degradation of transcripts harboring premature termination codons (PTCs) by the nonsense-mediated mRNA decay (NMD) pathway. We demonstrate in yeast that mRNAs lacking all termination codons are as labile as nonsense transcripts. Decay of "nonstop" t...
متن کاملInteractions between Upf1 and the Decapping Factors Edc3 and Pat1 in Saccharomyces cerevisiae
In Saccharomyces cerevisiae, mRNA transcripts with premature termination codons are targeted for deadenylation independent decapping and 5' to 3' decay in a quality control pathway termed nonsense-mediated decay (NMD). Critical factors in NMD include Upf1, Upf2, and Upf3, as well as the decapping enzyme, Dcp2/Dcp1. Loss of Upf2 or Upf3 leads to the accumulation of not only Upf1 and Dcp2 in P-bo...
متن کاملBinary specification of nonsense codons by splicing and cytoplasmic translation.
Premature translation termination codons resulting from nonsense or frameshift mutations are common causes of genetic disorders. Complications arising from the synthesis of C-terminally truncated polypeptides can be avoided by 'nonsense-mediated decay' of the mutant mRNAs. Premature termination codons in the beta-globin mRNA cause the common recessive form of beta-thalassemia when the affected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2004